NIC offloads at hyperscale Introducing the OCP NIC Core Features Spec v1.0

Netdev 0x17, 2023 Willem de Bruijn willemb@google.com

Difficult for operators to integrate new devices into fleet

Hardware bugs

UDP zero checksum conversion

Disconnect to Workloads

Custom protocols vs. protocol specific offloads

Scale to tens of millions of connections

Inconsistent Interfaces

Telemetry: which bytes does a byte counter count

Difficult for vendors to meet the needs of operators

Each RFP is written from scratch:

- incomplete: overlooking feature interplay, subtle details, performance aspects
- imprecise: "must have feature foo" but foo is nowhere defined unambiguously
- impossible to validate: no shared testsuites, let alone representative workloads

Why Document

- consistent behavior across devices
- correct behavior: warn about common implementation bugs
- apt behavior: share workloads and operating conditions

Why An Open Spec

- codify and share industry wide expertise, and iterate
- in a public format that is unencumbered by NDAs
- to create a broad market

What

Spec

Testsuite

Checklist

Self Certification

Queues Multi Queue

1-4----

Domain

Feature

Queue Length basic Num Queues basic Separate Post + Completion Queues optional Scatter-gather I/O basic Header-Split advanced Fixed Prefix Split (unless Header-split is supported) basic Reconfiguration without link down optional MMIO Transmit Mode optional Independent Rx and Tx Queue Lengths advanced Emergency Reserve Queue optional

Required

Value

[512, 4K]

[1, 1K]

>= 17

Target: Hyperscale Servers

- High End: 100s cores, 100s Gbps
- Large Scale: 10M+ active flows, 100K+ conn/s
- Heterogeneous Fleet
- Closed World: Custom Protocols
- Continuous Monitoring

Target: Hyperscale Servers

- High End: 100s cores, 100s Gbps
- Large Scale: 10M+ active flows, 100K+ conn/s
- Heterogeneous Fleet
- Closed World: Custom Protocols
- Continuous Monitoring

Scope: Core Features: Uncontroversial "Table Stakes"

Explicitly not: virtualization, smartnics

Interface: Driver behavior (net_device_ops / NDIS)

Not: implementation. Not: Device (PCI).

Open Compute Project (OCP) NIC Core Features Spec v1

opencompute.org/wiki/Networking/NIC_Software#Specs (pdf)
100% compliance is not a goal. Spec is a starting point. Report the diffs.

Contents

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Not Exhaustive: A Sample of Non Obvious Details

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Why Standardization

Target

- Hardware
- Scope
- Workload Model

Interface

Validation

Self-certification

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Queues

Interrupts

Multi-Queue

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Queues

- Header Split
- 4K/9K MTU + Conserving Memory

Interrupts

Multi-Queue

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Design Principles

Checksum Offload

Segmentation Offload

Receive Segment Coalescing

Timestamping

Traffic Shaping

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Design Principles

- Stateless
- Protocol Independent (!= Programmable)

Checksum Offload

Segmentation Offload

Receive Segment Coalescing

Timestamping

Traffic Shaping

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Design Principles

- Stateless
- Protocol Independent (!= Programmable)

Checksum Offload

- Linear sum over defined range
- Only one sum per packet

Segmentation Offload

Receive Segment Coalescing

Timestamping

Netdev 1.1 Keynote, DaveM, "Hardware Checksumming: Less is More", 2016

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Design Principles

- Stateless
- Protocol Independent (!= Programmable)

Checksum Offload

- Linear sum over defined range
- Only one sum per packet

Segmentation Offload

- TS0, US0, PIS0
- Jumbogram (BIGTCP)
- Details: FIN, PSH only on last segment

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Receive Segment Coalescing

Timestamping

Traffic Shaping

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Receive Segment Coalescing

Timestamping

- At Line Rate
- Applications: CC, Fleet monitoring, ...

Traffic Shaping

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Receive Segment Coalescing

Timestamping

- At Line Rate
- Applications: CC, Fleet monitoring, ...

Traffic Shaping

Egress: Earliest Departure Time

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Protocol Support

IPv6 First

Telemetry

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Bitrate

- Scalability: 1 to M streams, 1 to N cores
- With and without CSUM/TSO/RSC/...
- Real world conditions: antagonists
- Peak, stress and endurance runs

Packet rate

Connection count & rate

Latency

	Domain	Feature	Required	Value
	Queues			
		Queue Length	basic	[512, 4K]
		Num Queues	basic	[1, 1K]
		Separate Post + Completion Queues	optional	
		Scatter-gather I/O	basic	>= 17
		Header-Split	advanced	
		Fixed Prefix Split (unless Header-split is supported)	basic	
Appendix: Checklist		Reconfiguration without link down	optional	
Appendix: Validation		MMIO Transmit Mode	optional	
	Multi Queue			
		Independent Rx and Tx Queue Lengths	advanced	
		Emergency Reserve Queue	optional	

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

- Configuration
- Functional
- Performance

Possible ways to measure

An appendix: not normative

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

- Configuration
- Functional
 - RSS
 - RSC
 - ...
- Performance

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

- Configuration
- Functional
 - tools/testing/selftests/net/csum
 - tools/testing/selftests/net/gro
 - tools/testing/selftests/net/mmap
 - tools/testing/selftests/net/so_txtime*
 - tools/testing/selftests/net/toeplitz*
 - tools/testing/selftests/net/tso
 - tools/testing/selftests/net/udpgso*
 - <u>github.com/wdebruij/kerneltools/blob/../tstamp.c</u>
 - ip link
- Performance

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

- Configuration
- Functional
 - RSS (Toeplitz)
 - RSC
 - •
- Performance
 - <u>neper</u> tcp_rr, tcp_stream, udp_rr, ...
 - reproducible results
 - antagonists

Join the effort

How To Get Involved

- Certify Devices
- Contribute Tests + Cl Infra
- Contribute Text: Review v1 for v1.1
- Contribute Text: Add features for v2

Certify Devices

- Validate with Test Suite
- Self Certify with Checklist
- Publish Certification
 - OCP Inspired
 - OCP Marketplace

100% compliance is not the goal. Spec is a starting point. Document differences

Community Ongoing Work: WIP

- Improve testsuite
- Help vendors certify devices
- Collect changes for v1.1
- Expand to new features for v2
 - PSP Inline Crypto, Other? (DDP, QUIC, ..)

- As First Party: As an OCP member, Sign CLA
- As Third Party: through OCP Networking mailing list + monthly call

The OCP Process (for this spec)

- 1. Find an OCP project: Networking
 - Present idea and get initial support
- 2. Form a group of contributors
- 3. Sign Contributor License Agreement
- 4. Develop Draft
 - Decide: in the open or closed
- 5. Share with Community for input
- 6. Present to OCP project
- 7. Present to OCP Incubation Committee
- 8. Sign Final Spec Agreement

- 1. The case for a NIC feature spec
- 2. OCP Spec v1 overview
- 3. Join

Questions

More Info: opencompute.org/wiki/Networking/NIC_Software

Contact: me, OCP networking mailing list, monthly call