
NIC offloads at hyperscale 
Introducing the OCP NIC Core Features Spec v1.0

Netdev 0x17, 2023
Willem de Bruijn
willemb@google.com



Difficult for operators to integrate new devices into fleet

Hardware bugs

UDP zero checksum conversion

Disconnect to Workloads

Custom protocols vs. protocol specific offloads

Scale to tens of millions of connections

Inconsistent Interfaces

Telemetry: which bytes does a byte counter count



Difficult for vendors to meet the needs of operators

Each RFP is written from scratch:

• incomplete: overlooking feature interplay, subtle details, performance aspects

• imprecise: "must have feature foo" but foo is nowhere defined unambiguously

• impossible to validate: no shared testsuites, let alone representative workloads



Why Document

• consistent behavior across devices

• correct behavior: warn about common implementation bugs

• apt behavior: share workloads and operating conditions

Why An Open Spec

• codify and share industry wide expertise, and iterate

• in a public format that is unencumbered by NDAs

• to create a broad market



What

Spec

Testsuite

Checklist

Self Certification



Target: Hyperscale Servers

• High End: 100s cores, 100s Gbps
• Large Scale: 10M+ active flows, 100K+ conn/s
• Heterogeneous Fleet
• Closed World: Custom Protocols
• Continuous Monitoring



Target: Hyperscale Servers

• High End: 100s cores, 100s Gbps
• Large Scale: 10M+ active flows, 100K+ conn/s
• Heterogeneous Fleet
• Closed World: Custom Protocols
• Continuous Monitoring

Scope: Core Features: Uncontroversial "Table Stakes"

Explicitly not: virtualization, smartnics

Interface: Driver behavior (net_device_ops / NDIS)

Not: implementation. Not: Device (PCI).



Open Compute Project (OCP)
NIC Core Features Spec v1

opencompute.org/wiki/Networking/NIC_Software#Specs (pdf)
100% compliance is not a goal. Spec is a starting point. Report the diffs.

https://www.opencompute.org/documents/ocp-server-nic-core-features-specification-ocp-spec-format-1-pdf


Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Contents

Not Exhaustive: A Sample of Non Obvious Details



Why Standardization

Target

• Hardware

• Scope

• Workload Model

Interface

Validation

• Self-certification

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



Queues

Interrupts

Multi-Queue

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



Queues

• Header Split

• 4K/9K MTU + Conserving Memory

Interrupts

Multi-Queue

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



Design Principles

Checksum Offload

Segmentation Offload

Receive Segment Coalescing

Timestamping

Traffic Shaping

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



Design Principles

• Stateless

• Protocol Independent (!= Programmable)

Checksum Offload

Segmentation Offload

Receive Segment Coalescing

Timestamping

Traffic Shaping

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



Design Principles

• Stateless

• Protocol Independent (!= Programmable)

Checksum Offload

• Linear sum over defined range

• Only one sum per packet

Segmentation Offload

Receive Segment Coalescing

Timestamping

Traffic Shaping

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

Netdev 1.1 Keynote, DaveM, "Hardware Checksumming: Less is More", 2016



Design Principles

• Stateless

• Protocol Independent (!= Programmable)

Checksum Offload

• Linear sum over defined range

• Only one sum per packet

Segmentation Offload

• TSO, USO, PISO

• Jumbogram (BIGTCP)

• Details: FIN, PSH only on last segment

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



Receive Segment Coalescing

Timestamping

Traffic Shaping

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



Receive Segment Coalescing

Timestamping

• At Line Rate

• Applications: CC, Fleet monitoring, …

Traffic Shaping

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



Receive Segment Coalescing

Timestamping

• At Line Rate

• Applications: CC, Fleet monitoring, …

Traffic Shaping

• Egress: Earliest Departure Time

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



Protocol Support

• IPv6 First

Telemetry

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



Bitrate

• Scalability: 1 to M streams, 1 to N cores

• With and without CSUM/TSO/RSC/…

• Real world conditions: antagonists

• Peak, stress and endurance runs

Packet rate

Connection count & rate

Latency

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



Contents

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



• Configuration
• Functional
• Performance

Possible ways to measure

An appendix: not normative

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



• Configuration
• Functional

• RSS
• RSC
• …

• Performance

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation



• Configuration
• Functional

• tools/testing/selftests/net/csum
• tools/testing/selftests/net/gro
• tools/testing/selftests/net/mmap
• tools/testing/selftests/net/so_txtime*
• tools/testing/selftests/net/toeplitz*
• tools/testing/selftests/net/tso
• tools/testing/selftests/net/udpgso*
• github.com/wdebruij/kerneltools/blob/../tstamp.c
• ip link

• Performance

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

https://github.com/wdebruij/kerneltools/blob/master/tests/tstamp.c


• Configuration
• Functional

• RSS (Toeplitz)
• RSC
• …

• Performance
• neper tcp_rr, tcp_stream, udp_rr, ..
• reproducible results
• antagonists

Intro

I/O API

Offloads

Protocol Support

Telemetry

Performance

Appendix: Checklist

Appendix: Validation

https://github.com/google/neper


Join the effort



How To Get Involved

• Certify Devices

• Contribute Tests + CI Infra

• Contribute Text: Review v1 for v1.1

• Contribute Text: Add features for v2



Certify Devices

• Validate with Test Suite

• Self Certify with Checklist

• Publish Certification

• OCP Inspired

• OCP Marketplace

100% compliance is not the goal. Spec is a starting point. Document differences

https://www.opencompute.org/sp/product-recognition-program
https://www.opencompute.org/products?refinementList%5Bhardware.categories.Cards%5D%5B0%5D=NICs


Community Ongoing Work: WIP

• Improve testsuite

• Help vendors certify devices

• Collect changes for v1.1

• Expand to new features for v2

• PSP Inline Crypto, Other? (DDP, QUIC, ..)

• As First Party: As an OCP member, Sign CLA

• As Third Party: through OCP Networking mailing list + monthly call



The OCP Process (for this spec)

1. Find an OCP project: Networking

• Present idea and get initial support

2. Form a group of contributors

3. Sign Contributor License Agreement

4. Develop Draft

• Decide: in the open or closed

5. Share with Community for input

6. Present to OCP project

7. Present to OCP Incubation Committee

8. Sign Final Spec Agreement



1. The case for a NIC feature spec
2. OCP Spec v1 overview
3. Join

Questions

More Info: opencompute.org/wiki/Networking/NIC_Software
Contact: me, OCP networking mailing list, monthly call

https://www.opencompute.org/wiki/Networking/NIC_Software

